Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.

Identifieur interne : 000312 ( Main/Exploration ); précédent : 000311; suivant : 000313

A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.

Auteurs : Jiajun Nie [République populaire de Chine] ; Wenjing Zhou [République populaire de Chine] ; Jianying Liu [République populaire de Chine] ; Ni Tan [République populaire de Chine] ; Jian-Min Zhou [République populaire de Chine] ; Lili Huang [République populaire de Chine]

Source :

RBID : pubmed:33037676

Abstract

Plants use their innate immune system to defend against phytopathogens. As a part of this, pattern triggered-immunity is activated via pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs). Although an increasing number of PAMPs have been identified, the PRRs for their recognition remain largely unknown. In the present study, we report a receptor-like protein RE02 (Response to VmE02) in Nicotiana benthamiana, which mediates the perception of VmE02, a PAMP previously identified from the phytopathogenic fungus Valsa mali, using virus-induced gene silencing (VIGS), co-immunoprecipitation, pull-down and microscale thermophoresis assays. We show that silencing of RE02 markedly attenuated VmE02-triggred cell death and immune responses. RE02 specifically interacted with VmE02 in vivo and in vitro, and it displayed a high affinity for VmE02. Formation of a complex with the receptor-like kinases SOBIR1 and BAK1 was essential for RE02 to perceive VmE02. Moreover, RE02-silenced plants exhibited enhanced susceptibility to both the oomycete Phytophthora capsici and the fungus Sclerotinia sclerotiorum, while overexpression of RE02 increased plant resistance to these pathogens. Together, our results indicate that the PAMP VmE02 and the receptor-like protein RE02 represent a new ligand-receptor pair in plant immunity, and that RE02 represents a promising target for engineering disease resistance.

DOI: 10.1111/nph.16995
PubMed: 33037676


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.</title>
<author>
<name sortKey="Nie, Jiajun" sort="Nie, Jiajun" uniqKey="Nie J" first="Jiajun" last="Nie">Jiajun Nie</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Wenjing" sort="Zhou, Wenjing" uniqKey="Zhou W" first="Wenjing" last="Zhou">Wenjing Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianying" sort="Liu, Jianying" uniqKey="Liu J" first="Jianying" last="Liu">Jianying Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Ni" sort="Tan, Ni" uniqKey="Tan N" first="Ni" last="Tan">Ni Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jian Min" sort="Zhou, Jian Min" uniqKey="Zhou J" first="Jian-Min" last="Zhou">Jian-Min Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lili" sort="Huang, Lili" uniqKey="Huang L" first="Lili" last="Huang">Lili Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33037676</idno>
<idno type="pmid">33037676</idno>
<idno type="doi">10.1111/nph.16995</idno>
<idno type="wicri:Area/Main/Corpus">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000037</idno>
<idno type="wicri:Area/Main/Curation">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000037</idno>
<idno type="wicri:Area/Main/Exploration">000037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.</title>
<author>
<name sortKey="Nie, Jiajun" sort="Nie, Jiajun" uniqKey="Nie J" first="Jiajun" last="Nie">Jiajun Nie</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Wenjing" sort="Zhou, Wenjing" uniqKey="Zhou W" first="Wenjing" last="Zhou">Wenjing Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianying" sort="Liu, Jianying" uniqKey="Liu J" first="Jianying" last="Liu">Jianying Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Ni" sort="Tan, Ni" uniqKey="Tan N" first="Ni" last="Tan">Ni Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jian Min" sort="Zhou, Jian Min" uniqKey="Zhou J" first="Jian-Min" last="Zhou">Jian-Min Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lili" sort="Huang, Lili" uniqKey="Huang L" first="Lili" last="Huang">Lili Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants use their innate immune system to defend against phytopathogens. As a part of this, pattern triggered-immunity is activated via pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs). Although an increasing number of PAMPs have been identified, the PRRs for their recognition remain largely unknown. In the present study, we report a receptor-like protein RE02 (Response to VmE02) in Nicotiana benthamiana, which mediates the perception of VmE02, a PAMP previously identified from the phytopathogenic fungus Valsa mali, using virus-induced gene silencing (VIGS), co-immunoprecipitation, pull-down and microscale thermophoresis assays. We show that silencing of RE02 markedly attenuated VmE02-triggred cell death and immune responses. RE02 specifically interacted with VmE02 in vivo and in vitro, and it displayed a high affinity for VmE02. Formation of a complex with the receptor-like kinases SOBIR1 and BAK1 was essential for RE02 to perceive VmE02. Moreover, RE02-silenced plants exhibited enhanced susceptibility to both the oomycete Phytophthora capsici and the fungus Sclerotinia sclerotiorum, while overexpression of RE02 increased plant resistance to these pathogens. Together, our results indicate that the PAMP VmE02 and the receptor-like protein RE02 represent a new ligand-receptor pair in plant immunity, and that RE02 represents a promising target for engineering disease resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33037676</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16995</ELocationID>
<Abstract>
<AbstractText>Plants use their innate immune system to defend against phytopathogens. As a part of this, pattern triggered-immunity is activated via pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs). Although an increasing number of PAMPs have been identified, the PRRs for their recognition remain largely unknown. In the present study, we report a receptor-like protein RE02 (Response to VmE02) in Nicotiana benthamiana, which mediates the perception of VmE02, a PAMP previously identified from the phytopathogenic fungus Valsa mali, using virus-induced gene silencing (VIGS), co-immunoprecipitation, pull-down and microscale thermophoresis assays. We show that silencing of RE02 markedly attenuated VmE02-triggred cell death and immune responses. RE02 specifically interacted with VmE02 in vivo and in vitro, and it displayed a high affinity for VmE02. Formation of a complex with the receptor-like kinases SOBIR1 and BAK1 was essential for RE02 to perceive VmE02. Moreover, RE02-silenced plants exhibited enhanced susceptibility to both the oomycete Phytophthora capsici and the fungus Sclerotinia sclerotiorum, while overexpression of RE02 increased plant resistance to these pathogens. Together, our results indicate that the PAMP VmE02 and the receptor-like protein RE02 represent a new ligand-receptor pair in plant immunity, and that RE02 represents a promising target for engineering disease resistance.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Jiajun</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5765-0931</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Wenjing</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianying</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Ni</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jian-Min</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9943-2975</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7085-7646</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31671982</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>U1903206</GrantID>
<Agency>National Natural Science Foundation-Xinjiang Joint Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Nicotiana benthamiana </Keyword>
<Keyword MajorTopicYN="N">pattern recognition receptor</Keyword>
<Keyword MajorTopicYN="N">plant innate immunity</Keyword>
<Keyword MajorTopicYN="N">receptor-like protein</Keyword>
<Keyword MajorTopicYN="N">virus-induced gene silencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>5</Hour>
<Minute>36</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33037676</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16995</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.</Citation>
</Reference>
<Reference>
<Citation>Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants 1: 1-9.</Citation>
</Reference>
<Reference>
<Citation>Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. 2020. Surface sensor systems in plant immunity. Plant Physiology 182: 1582.</Citation>
</Reference>
<Reference>
<Citation>Beck M, Heard W, Mbengue M, Robatzek S. 2012. The INs and OUTs of pattern recognition receptors at the cell surface. Current Opinion in Plant Biology 15: 367-374.</Citation>
</Reference>
<Reference>
<Citation>Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annual Review of Phytopathology 55: 257-286.</Citation>
</Reference>
<Reference>
<Citation>Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3: e03766.</Citation>
</Reference>
<Reference>
<Citation>Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18: 465-476.</Citation>
</Reference>
<Reference>
<Citation>Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16: 537.</Citation>
</Reference>
<Reference>
<Citation>Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746-751.</Citation>
</Reference>
<Reference>
<Citation>de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences, USA 109: 5110-5115.</Citation>
</Reference>
<Reference>
<Citation>de Wit PJ. 2016. Cladosporium fulvum effectors: weapons in the arms race with tomato. Annual Review of Phytopathology 54: 1-23.</Citation>
</Reference>
<Reference>
<Citation>Domazakis E, Wouters D, Visser RG, Kamoun S, Joosten MH, Vleeshouwers VG. 2018. The ELR-SOBIR1 complex functions as a two-component receptor-like kinase to mount defense against Phytophthora infestans. Molecular Plant-Microbe Interactions 31: 795-802.</Citation>
</Reference>
<Reference>
<Citation>Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LP, Zhou J, Liebrand TW, Xie C, Govers F, Robatzek S. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants 1: 1-5.</Citation>
</Reference>
<Reference>
<Citation>Fritz-Laylin LK, Krishnamurthy N, Tör M, Sjölander KV, Jones JD. 2005. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiology 138: 611-623.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Gómez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1011.</Citation>
</Reference>
<Reference>
<Citation>Gust AA, Felix G. 2014. Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology 21: 104-111.</Citation>
</Reference>
<Reference>
<Citation>Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences, USA 104: 12217-12222.</Citation>
</Reference>
<Reference>
<Citation>Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z, O'Doherty IM, Baccile JA, Hoki JS, Viox EG, Clarke CR. 2016. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nature Plants 2: 1-8.</Citation>
</Reference>
<Reference>
<Citation>Hurst CH, Turnbull D, Myles SM, Leslie K, Keinath NF, Hemsley PA. 2018. Variable effects of C-terminal fusions on FLS2 function: not all epitope tags are created equal. Plant Physiology 177: 522-531.</Citation>
</Reference>
<Reference>
<Citation>Ito Y, Kaku H, Shibuya N. 1997. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. The Plant Journal 12: 347-356.</Citation>
</Reference>
<Reference>
<Citation>Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Fürst U, Mueller K, Felix G. 2013. The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25: 2330-2340.</Citation>
</Reference>
<Reference>
<Citation>Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, USA 103: 11086-11091.</Citation>
</Reference>
<Reference>
<Citation>Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.</Citation>
</Reference>
<Reference>
<Citation>Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, Van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28: 365-369.</Citation>
</Reference>
<Reference>
<Citation>Liebrand TW, van den Burg HA, Joosten MH. 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends in Plant Science 19: 123-132.</Citation>
</Reference>
<Reference>
<Citation>Liebrand TW, van den Berg GC, Zhang Z, Smit P, Cordewener JH, America AH, Sklenar J, Jones AM, Tameling WI, Robatzek S. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences, USA 110: 10010-10015.</Citation>
</Reference>
<Reference>
<Citation>Liu B, Li J-F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K. 2012. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24: 3406-3419.</Citation>
</Reference>
<Reference>
<Citation>Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408.</Citation>
</Reference>
<Reference>
<Citation>Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 19613-19618.</Citation>
</Reference>
<Reference>
<Citation>Mott GA, Thakur S, Smakowska E, Wang PW, Belkhadir Y, Desveaux D, Guttman DS. 2016. Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation. Genome Biology 17: 98.</Citation>
</Reference>
<Reference>
<Citation>Nie J, Yin Z, Li Z, Wu Y, Huang L. 2019. A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern. New Phytologist 222: 995-1011.</Citation>
</Reference>
<Reference>
<Citation>Ntoukakis V, Schwessinger B, Segonzac C, Zipfel C. 2011. Cautionary notes on the use of C-terminal BAK1 fusion proteins for functional studies. Plant Cell 23: 3871-3878.</Citation>
</Reference>
<Reference>
<Citation>Postma J, Liebrand TW, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten MH, Robatzek S. 2016. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytologist 210: 627-642.</Citation>
</Reference>
<Reference>
<Citation>Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJG, Luu DD, Chen H. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances 1: e1500245.</Citation>
</Reference>
<Reference>
<Citation>Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zähringer U, Hückelhoven R, Lee J. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology 16: 426.</Citation>
</Reference>
<Reference>
<Citation>Ron M, Avni A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16: 1604-1615.</Citation>
</Reference>
<Reference>
<Citation>Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C. 2011. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440-2455.</Citation>
</Reference>
<Reference>
<Citation>Sang Y, Macho AP. 2017. Analysis of PAMP-triggered ROS burst in plant immunity. In: Shan L, He P, eds. Plant pattern recognition receptors. Methods in molecular biology. New York, NY, USA: Humana Press, 143-153.</Citation>
</Reference>
<Reference>
<Citation>Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP. 2016. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proceedings of the National Academy of Sciences, USA 113: 3389-3394.</Citation>
</Reference>
<Reference>
<Citation>Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KF, Li W-H. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16: 1220-1234.</Citation>
</Reference>
<Reference>
<Citation>Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research 47(W1): W270-W275.</Citation>
</Reference>
<Reference>
<Citation>Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou J-M, Chai J. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342: 624-628.</Citation>
</Reference>
<Reference>
<Citation>Tang D, Wang G, Zhou J-M. 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29: 618-637.</Citation>
</Reference>
<Reference>
<Citation>Wan W-L, Fröhlich K, Pruitt RN, Nürnberger T, Zhang L. 2019. Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology 50: 18-28.</Citation>
</Reference>
<Reference>
<Citation>Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu C-M, Woods-Tör A, Zipfel C. 2008. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiology 147: 503-517.</Citation>
</Reference>
<Reference>
<Citation>Wang L, Albert M, Einig E, Fürst U, Krust D, Felix G. 2016. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants 2: 16185.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications 9: 1-12.</Citation>
</Reference>
<Reference>
<Citation>Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono J-J, Cullimore JV. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, USA 108: 19824-19829.</Citation>
</Reference>
<Reference>
<Citation>Wu J, Reca IB, Spinelli F, Lironi D, De Lorenzo G, Poltronieri P, Cervone F, Joosten MH, Ferrari S, Brutus A. 2019. An EFR-Cf-9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1-and BAK1-dependent recognition of elf18. Molecular Plant Pathology 20: 751-764.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi Y, Pearce G, Ryan CA. 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proceedings of the National Academy of Sciences, USA 103: 10104-10109.</Citation>
</Reference>
<Reference>
<Citation>Yu X, Tang J, Wang Q, Ye W, Tao K, Duan S, Lu C, Yang X, Dong S, Zheng X. 2012. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytologist 196: 247-260.</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JA. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiology 164: 352-364.</Citation>
</Reference>
<Reference>
<Citation>Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, Boutrot FF, Tör M, Zipfel C, Gust AA, Brunner F. 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25: 4227-4241.</Citation>
</Reference>
<Reference>
<Citation>Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Nie, Jiajun" sort="Nie, Jiajun" uniqKey="Nie J" first="Jiajun" last="Nie">Jiajun Nie</name>
</noRegion>
<name sortKey="Huang, Lili" sort="Huang, Lili" uniqKey="Huang L" first="Lili" last="Huang">Lili Huang</name>
<name sortKey="Liu, Jianying" sort="Liu, Jianying" uniqKey="Liu J" first="Jianying" last="Liu">Jianying Liu</name>
<name sortKey="Tan, Ni" sort="Tan, Ni" uniqKey="Tan N" first="Ni" last="Tan">Ni Tan</name>
<name sortKey="Zhou, Jian Min" sort="Zhou, Jian Min" uniqKey="Zhou J" first="Jian-Min" last="Zhou">Jian-Min Zhou</name>
<name sortKey="Zhou, Wenjing" sort="Zhou, Wenjing" uniqKey="Zhou W" first="Wenjing" last="Zhou">Wenjing Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33037676
   |texte=   A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33037676" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024